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Abstract 
 

 This high performance computing (HPC) system 
processed real-time X-band radar returns into continuous 
strip-map, high-resolution (< 1m), wide-swath (37 km) 
imagery on-board a Convair 580 aircraft.  The HPC 
system cost under $100K.  The synthetic aperture radar 
(SAR) image formation algorithm was optimized to 
achieve real-time processing 9000 times faster than the 
original algorithm specification.  An information 
management system allowed real-time off-board 
exploitation of the on-board multi-terabyte database.  
Real-time SAR image formation was demonstrated on five 
flight tests.  The completed flights provided 7.3 terabytes 
of raw and processed imagery.   
 
1.  Introduction 
 
 The Swathbuckler experiment was conducted 
between 2001 and 2005 under the auspices of The 
Technical Cooperation Program (TTCP).  The goal was to 
design, implement, and flight test novel system 
architecture able to continually process in real-time 37 km 
wide radar returns into high resolution stripmap synthetic 
aperture radar (SAR) imagery and make this voluminous 
information product available everywhere within seconds.  
The US, UK, Canada, and Australia all contributed to the 
experiment, with the US delivering the embedded HPC 
with optimized software.  The high performance 
computing (HPC) challenge was to reduce the 12.5 hour 
runtime of the initial Canadian MATLAB code to two 
minutes on a single node.  The resulting test image was 
1.5 km by 11.2 km.  Parallelizing across 24 nodes then 
yielded the 37 km deep image—a speedup of over 
9000X—which produced imagery at a rate of 3.43 
km2/second or 300K km2/day. 
 As background, stripmap SAR imagery is produced 
by processing the returns from thousands of pulses 
emitted by airborne radar as it nominally flies a straight 

line.  The distance flown as these pulses are emitted 
creates a “synthetic” aperture which is much larger than 
the radar antenna physically resident on an aircraft.  This 
allows much higher resolution imagery to be created in 
the direction parallel to the aircraft flight path.  High 
speed A/D converters provide high resolution in the range 
direction, which runs perpendicular to the flight path.  In 
this case, the pixel sizes were less than 1 meter (see 
Figure 1 for a sample image).   
 SAR applications typically involve sophisticated 
processing of large volumes of data[1] to correct for 
aircraft motion away from the planned path, compress the 
signal returns in the range (perpendicular to aircraft) and 
azimuth (parallel to aircraft) directions, and nicely focus 
the images.  Current SAR systems operate across small 
range swaths at any one time due to the processing 
limitations associated with generating the imagery.  Here 
the objective was to parallelize on an embedded HPC to 
image a 37 km wide range swath in real time.  The SAR 
imagery produced during our demonstration processed 
returns from blocks of 16384 or 32768 transmitted pulses 
into images and wrote them to disk.[2]   
 The HPC computational challenge was primarily 
related to speeding up the initial MATLAB algorithm to 
keep up with the incoming pulses as the aircraft flew.  
However, accepting high speed inputs, and writing 
finished images to disk were also significant challenges, 
especially when implementing on a conventional HPC 
cluster to make the system most affordable. 
 
2.  Objectives 
 
 The principal objective was to demonstrate in flight 
tests that affordable (~$100K) embedded HPC was up to 
the challenge of sustaining computational throughput of 
100 GFLOPS and thereby allowing high resolution (<1m) 
SAR imagery across a 37 km strip to be produced and 
exploited in real-time.  The principal subcomponents of 
this objective were: 
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A. High speed data input to the HPC from the radar 
frontend 

B. Optimized real-time signal/image processing on 
the HPC with storage to disk 

C. Real-time exploitation and dissemination 
D. Integration of the US HPC with the Canadian 

radar and aircraft systems and the UK A/D and 
frontend hardware 

E. Flight test experimentation and data collection 
 
3.  Approach 
 
3.1. Overview of the Approach 
 
 The real-time data input used an FPGA to fan-out the 
high speed A/D inputs into UDP packets sent to the 24 
nodes across eight gigabit Ethernet fiber optic links.  The 
optimization began by converting MATLAB to C++ 
which reduced azimuth block formation to 4050 seconds.  
Subsequent optimizations including vector libraries and 
cache optimizations reduced this down to 15 seconds—
meeting the real-time deadline.  Integration with the other 
nations began with data exchanges and proceeded to 
laboratory testing in Ottawa, followed by five flight tests 
in Ottawa and Kingston, Ontario in Aug–Sep, 2005.  
During these flights both the raw radar returns and the 
formed images were saved to disk to support follow-on 
research.  The onboard and offboard exploitation used a 
publish-subscribe-query information management 
environment onboard, linked via 300 kbit radio and the 
internet to a like environment on HPCs at Rome, NY and 
from there disseminated to users across the DREN. 
 
3.2. Embedded HPC (EHPC) Selection and 
Design  
 
 The evolution of the EHPC system architecture 
design identified key characteristics of the computing 
platform that would provide the most benefit to the SAR 
image formation task.  Because stripmap SAR image 
formation tends to be memory and I/O bound, increases in 
DRAM densities, on-board cache sizes, and I/O 
bandwidths directly relate to the achievable performance 
of the EHPC.  From the time of initial concept to flight 
tests several improvements in memory and I/O price 
performance greatly influenced the final design.  For 
example, the first EHPC design used a SKY multi-
computer with 16 PowerPC processors on 8 boards with 
only 64 megabytes of memory per PowerPC with 
Fiberchannel I/O cards (~$1.8M).  The second iteration 
explored 24 dual Xeon nodes supported by 4 GB of 
DRAM, each with an associated Annapolis Wildstar 
FPGA board in addition to gigabit and 100 Mb Ethernet 
links (~$500K).  The flight EHPC employed 24 dual 

Xeon nodes with L2 caches sized at 1MB supported by 
8GB of DRAM and dual gigabit Ethernet links (~$75K) 
with a single FPGA in the frontend to packetize A/D data.  
This “Coyote” cluster is the EHPC that was used for the 
Swathbuckler flight tests.  More details on the system 
architecture evolution can be found in Reference 2. 
 Figure 2 depicts the final system architecture which 
used the EHPC to form hi-resolution SAR imagery across 
the 37 km wide swath continuously.  The processing load 
is linearly related to the speed of the aircraft, which for 
stripmap SAR processing sets the pulse repetition 
frequency (PRF) of the radar.  For this experiment, a PRF 
of 500 Hz was sustained.  With the system architecture 
established, the design of the subcomponents could 
proceed. 
 
A. High speed data input to the HPC from the radar 
frontend 
 
 A critical component of the system architecture 
involved designing a method to move the large data 
stream from the radar sensor to the EHPC in a compatible 
format to accomplish the signal processing.  Because 
there were no existing systems to interface the SAR 
returns to an HPC a solution was designed.  The 
resolution requirements dictated a 2 GHz sample rate.  
Initially, an Atmel analog-to-digital converter (ADC) 
evaluation board connected to an Atmel Demultiplexing 
(DMUX) board were selected and fed into a custom board 
with a single FPGA and memory.  The DMUX slowed the 
2 GHz data rate down by a factor of eight to 250 MHz, a 
frequency which could be handled with careful FPGA 
design.  The Xilinx Virtex II Pro FPGAs had recently 
become available and supported up to eight high speed 
serial I/O links, which in turn could drive gigabit 
Ethernet.  The FPGA was assigned several tasks.  First, it 
cut out the range cells of interest from the continuous A/D 
inputs—this required also receiving a discrete timing 
pulse from the radar controller to precisely know when 
each radar pulse was transmitted.  Second, since the radar 
data was sampled at an intermediate frequency (IF), the 
FPGA applied a standard Hilbert transform and low pass 
filter to convert it to baseband I,Q conventional 
representation.  Third, the FPGA chopped up the wide 37 
km swath into twenty four subswaths of 1.5 km and 
duplicated the necessary overlapping range bins amongst 
adjacent subswaths.  Finally, the FPGA formed UDP 
packets addressed to each of the 24 cluster nodes and sent 
them off via the eight gigabit Ethernet ports.  Since the 
FPGA board was near the radar in the front of the aircraft 
and the cluster was in the rear of the aircraft, fiber optic 
Ethernet transducers were used to avoid interference in 
the noisy RF environment.  The FPGA also featured 
embedded PowerPC cores, which allowed a serial 
interface to external computers to communicate and 
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interactively set most of the operating parameters of the 
design, such as range extents, overlaps, etc. 
 During testing and integration we discovered that the 
initial prototype had crosstalk issues on the incoming 
signals from the DMUX board.  The integration issues 
and cross-talk challenges experienced on the prototype 
motivated the use of an integrated solution—which 
became a commercial product.  The final flight solution 
used the Quixilica Neptune and Callisto FPGA-based 
cards.  The Neptune card accomplished the ADC and 
DMUX functions while the conversion to, and 
distribution of, multiple Gigabit Ethernet outputs 
capabilities were accomplished with the Callisto VXS 
FPGA card.  Further detail on the design of the interface 
between the SAR radar and HPC are found in 
Reference 5.   
 
B. Optimized real-time signal/image processing on the 
HPC with storage to disk 
 
 Meeting the real-time signal/image processing 
requirements on an HPC requires intimate familiarity with 
the processing architecture in conjunction with parallel 
computing techniques.  Each component of the HPC 
contributes significantly to meeting the real-time SAR 
imaging challenge from the network I/O throughput to 
processing performance to applying classes of 
optimization techniques to disk I/O and the size of on-
board/on-chip memory.  This section details the influence 
of these architecture components, the algorithm 
implementation tradeoffs, and other system tradeoffs that 
contributed to the optimization of the SAR program.   
 The stripmap processing is grouped into two 
categories in alignment with the dual-node architecture: 
range and azimuth processing.  Range processing operates 
continuously on the incoming range lines and consists of 
parameters generation, motion compensation, forward 
FFT/range replica and multiply/inverse FFT.  Azimuth 
processing operates on a block of range lines (i.e., an 
azimuth block), which are used to form the output image 
and consists of range cell migration correction, 
autofocusing, azimuth compression, output resampling, 
pixel detection, and imagery scaling. 

1) Using data decomposition to map the SAR 
algorithm onto the HPC cluster 

 To maximize the parallel computing power of the 
HPC the algorithm implementation decomposed the data 
according to swath width.  The 37 km swath divides 
easily into 24 pieces such that any one cluster node has 
the responsibility to form ~1.5 km swath of SAR imagery.  
This allocation allowed for processing at each node on a 
localized data set.  The large number of FFT calculations 
that make up the range and azimuth processing can 
operate on each node’s local memory eliminating 
otherwise costly FFT inter-node communication.  In 

addition, all-to-all communications would be required 
during multiple corner-turning operations between the 
range and azimuth processing.  Using data decomposition 
the cluster nodes can devote almost all of their time to 
processing imagery (in chunks of 16 or 32 K blocks 
depending on range) using local memory structures rather 
than having to wait on expensive inter-node 
communication.   
 Figure 3 represents this data decomposition relating 
the processed imagery (16K/32K blocks) to each ~1.5 km 
subswath along one leg of the flight path.   

2) Network I/O 
 The external network connection resident on each 
node must be able to receive the 16 MB/s of data coming 
from the high speed front-end interface.  The gigabit 
Ethernet connections local to each node satisfied this 
requirement.   

3) Processing performance and strategy 
 Signal and image processing applications use floating 
point operations extensively.  Using a complexity analysis 
one can estimate the anticipated number of FLOPS 
required for a solution.   
 Table 1 shows the contributing algorithm 
complexities of the range processing.  For example, the 
computational complexity for a 32K FFT is 5n log(n) 
where n=32,768 resulting in 2,457 KFLOPS.  The vector 
multiply, motion compensation, and scaling functions are 
measured by counting how many FLOPS are attributed to 
addition/multiplication of the vector and scalar 
operations.  For example a complex vector multiplied by a 
complex vector is attributed 6 FLOPS, an addition of a 
real vector and a real scalar 1 FLOP, and the cos of a 
complex vector 80 FLOPS.  The total sustained range 
processing for one node is 2.59 GFLOPS/second 
assuming we are collecting 500 range lines a second. 
 

Table 1. Range Processing FLOPS 

Range Component Size Count FLOP 
Convert 32768 1 32768 
32K FFT  32768 1 2457600 
Vector Multiply  16384 1 98304 
Motion Compensation 16386 1 1441968 
16K IFFT  16384 1 1146880 
Scaling  10390 1 20780 

Total GFLOPS per range line (pulse) 0.0051983 
Total GFLOPS per node per second 2.6 

 
 The various components of the azimuth processing 
shown in Table 2 indicate that it takes ~78 GFLOPS to 
process and output a 32K block (about 10000 by 13000 
pixels) of imagery—which represents what one node 
would have to accomplish during the allotted timeframe.  
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Unlike the range processing, the azimuth processing 
requirements are more grow with range from the aircraft 
because the overlap between successive azimuth blocks 
grows.  Table 2 is representative of the 10th node (swath 
range from 34.6-36.2 KM) and must have its first 32K 
block of data processed in azimuth  50 seconds before the 
next block must be processed (node 1 only has 24 seconds 
and uses 16K block sizes.)  The total GFLOPS for node 
10 is then 78 GFLOPS accomplished in 50 seconds or 
1.56 sustained GFLOPS/second.  On the average this 
number is 1.52 GFLOPS/second for each of the 24 nodes 
for a grand total of 36.6 GFLOPS/second required 
azimuth processing.   
 

Table 2. Azimuth Processing Operation Count 

Azimuth (Block 32K and Presum 2) 

Azimuth Compression Size Count GFLOP 
Presum Value 32768 10390 25.53 
Range Cell Migration Correction 16384 10308 5.66 
Comp-Matched 16384 10308 14.86 
Comp-IFFT 16384 10308 11.82 
Azimuth Compression subtotal   57.88 

Autofocus 
Select Lines 
Matched Filter 4096 2600 0.94 
FFT 4096 2600 0.94 
MapDrift 
Matched nAzPs 16384 2600 3.75 
8K IFFTx2 nAzPs 16384 2600 5.96 
FFT nAzPs 16384 2600 2.98 
IFFT nAzPs*2 32768 2600 6.39 

Autofocus subtotal   20.66 
Grand Total per 32K Block   78.54 

 
 The total range requirement of 62.38 GFLOPS 
combined with 36.6 GFLOPS of azimuth/output 
processing requires sustaining on the order of 100 
GFLOPS per second for the stated radar configuration.  
Because the Coyote cluster has a peak of 614 GFLOPS 
and the FFT benchmarks looked favorable 100 GFLOPS 
seemed achievable. 

4) Classes of optimization techniques 
 Unfortunately, achieving 16% of peak performance is 
not as simple as running with ‘gcc -O3’—the highest 
compiler optimization flag.  In our experience it took a 
persistent effort at several entry points in the software and 
hardware architecture.  The optimization of the SAR task 
revealed the strengths and subtle relationships that have a 
large influence on large data signal processing 
applications.  Six classes are defined and analyzed to 
reveal the most valuable optimization activities. 

 At the operating system (OS) level optimizations 
resulted from modifying the kernel configuration to 
handle larger memory allocations per process 
(approaching the entire 32-bit pointer limitation: ~4GB), 
enabling the shared memory extensions in the kernel 
configuration, and turning on the DMA hooks to avoid 
thrashing the cache unnecessarily.   
 The second class of optimization is parallel 
techniques commonly used in cluster computing.  The 
SAR algorithm benefited by using a 4 stage pipeline so as 
to minimize waiting that would have resulted from the 
data-dependencies laden in strictly sequential processes.  
A second fundamental benefit was an auto-load balancer 
which monitored the activity for both the range and 
azimuth processors to take advantage of the extra CPU 
cycles in situations when one processor’s task was 
finished sooner than the other. 
 Next, optimizations came from hardware upgrades.  
More important than clock rate advances were enlarging 
the level 2 cache from 512K to 1 MB, and recently to 2 
MB.  This greatly improved performance on longer 
transforms, which in turn led to less inefficiency with 
overlaps.  For example, understanding how a 16K FFT 
reacts to L2 cache misses resulted in a 40% speedup after 
upgrading to 1 MB.    While not increasing the speedup 
directly, upgrading to 8 GB of DRAM did provide for a 
much larger optimization “landscape” and simplified the 
shared memory approach to dual Xeon coordination.   
 “Process specific” optimizations include modifying 
compilation flags, and changing the program syntax so 
that the resulting process is streamlined.  Often when 
setting particular optimization flags previously working 
code has to be modified to fit the tighter compiler 
constraints.  Also part of this class of optimization is the 
inclusion of special-purpose libraries—such as the vector 
signal image processing libraries (VSIPL) used 
extensively in this algorithm.   In addition to VSIPL 
libraries, CPU optimized (e.g., Intel Performance 
Primitives) were also be included during compile and 
linking operation.   
 Eliminating redundancy and reducing I/O overhead 
through efficient expressions of logic and consolidation 
are exampes of optimizations in the domain-specific or 
algorithm class.  For example, moving vector allocations 
outside loops and consolidating expensive corner turn 
operations were important for stripmap SAR.  Removing 
redundancy and unneeded copying, even in some of the 
VSIPL libraries, proved invaluable for the azimuth 
processing task. 
 Finally, the memory management class seems to have 
a ubiquitous presence at all size problems.  Initially, the 
MATLAB code managed its intermediate data though the 
hard disk—this was quickly removed as a major 
slowdown—however handling 2-3 GB chunks of memory 
is not easily done on 32-bit operating systems.   Equally 

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00  © 2006

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:17:07 EDT from IEEE Xplore.  Restrictions apply. 



challenging is keeping the cache from thrashing and byte-
aligning addresses 128 byte boundaries to be considerate 
of cache line impacts.    An important optimization for 
range cell migration correction was to recast it to work 
across whole cache lines before stepping, out-of stride, to 
the next range cell.  This reformulation eliminated a 
costly cornerturn of the large matrix. 
 Figure 4 shows the chronological contribution of 
applying these optimizations and highlights the major 
advances achieved in the case of the azimuth processing.  
The software optimizations mainly occurred over a seven 
month period.  For a detailed annotation of the events on 
this chart see Reference 10.   
 The azimuth processing presented the most difficult 
optimization challenge.  With this in hand, the four stages 
of the processing were able to sustain the arrival of 500 
range lines per second across the 24 nodes.  Compared to 
the MATLAB consumption of 60000 range lines in 12.5 
hours for just 1 node’s range extent, this is a speedup of 
9000X. 
 In preparation for a second set of flight tests in July 
2006, eight new Xeon nodes with 2 MB L2 cache have 
been procured.  With further optimization of the FFT and 
cornerturning routines, and by increasing the memory 
available to the threads via kernel modifications, 32K 
block azimuth processing is available across the whole 
swath.  Azimuth processing has been accelerated to 22 
seconds for the 32K block.  When combined with the 
other computational stages, system PRF now exceeds 700 
Hz and is approaching the goal of 800 Hz for these flight 
tests. 
 
C. Real-time exploitation and dissemination 
 
 Producing hi-resolution imagery in real-time on an 
aircraft results in hundreds of megabytes of data being 
stored to disk every second.  Being able to access this 
large data repository onboard the aircraft might seem to 
achievable.  But providing exploitable access from an 
offboard site requires a smart information management 
strategy. 
 The Joint Battlespace Infosphere (JBI)[7] provides 
accessible, scalable, custom-query, low latency, 
redundant, and intuitive information management 
capabilities—so it was the logical choice.  In addition to 
those attributes the JBI uses a loosely-coupled publish and 
subscribe architecture. 
 During the flight tests, in order for the observer on 
the ground to watch the events as they occurred in the air 
the information management system had to relay 
associated meta-data, particularly rectangles on a map 
portraying the images just formed.  After the flights this 
meta-data can be used to replay each flight in the exact 
sequence as it occurred.  The database contains the 
processed imagery, time, day, geo-registered location, leg, 

and block size associated with all the processed imagery.  
The ground user also uses the meta-data to produce a 
custom query into the on-board SAR database.  On flight 
37, the latency in sending, servicing, and delivering the 
results of a query took 14 seconds. 
 
D. Integration of the US HPC with the Canadian 
radar and aircraft systems and the UK A/D and 
frontend hardware 
 
 Moving from the protected lab environment to a real-
world flight test integration of multiple high performance 
finely-tuned hardware systems is challenging.  This 
section details experiences embedding an HPC on-board a 
Convair 580 and ensuring the HPC, front-end hardware, 
and radar controllers successfully communicated. 
 The HPC nodes were installed with the first 12 sitting 
in in front of the remaining 13 (including head node).  
The weight of the cluster required that it be positioned 
near the aircraft center of gravity, approximately 30 feet 
aft of the radar and frontend processing hardware. 
 The aircraft systems were designed for power loads 
from prior test configurations which maxed out at 8kW.  
To host the HPC onboard, two 115V circuits had to be 
used—a 15-amp for eight of the processing nodes and the 
head node and a 20-amp for the remaining 16 back-end 
nodes.   
 Another challenge involved the aircraft cooling 
system.  Due to the heat generated by an HPC, ground-
based installations use raised floor and specialized 
cooling to avoid CPU damage from excess ambient 
temperatures.  On the Convair, the temperatures were 
regulated by channeling four passenger air ducts through 
hoses down to the back and front sides of either cluster 
rack.   
 Initially connecting the front-end hardware to the 
HPC revealed an issue with the network protocol.  Since 
the approved design document used to implement the 
front-end network interface did not include all levels of 
the network model, messages coming from the front-end 
interface were not being properly addressed and packets 
were being dropped.  At the ARP protocol level MAC IDs 
were not properly associating with node IP addresses.  
Operation without dropping packets was successfully 
achieved by running a script on the HPC cluster that 
forced the correct ARP protocol associations to be made. 
 Processing the image returns from the radar began 
with the raw data being fed to the HPC from the front-end 
interface—but the aircraft navigation data was also 
needed from the radar system.  Collecting the position 
information from the radar data acquisition system 
required extracting data fields from binary formatted 
record structure.  Using the header file descriptions and 
associated receiver simulator the binary data was easily 
translated into textual representation.  The navigation 
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information was then distributed across the HPC cluster to 
each of the 24 processing nodes through a mounted 
network file system.   
 A successful end-to-end integration test was 
accomplished using the Range Filter Generation (RFG) 
mode tests of the radar system.  That mode exercised all 
the components of the radar system, front-end processing 
system, and the SAR imaging algorithm running on the 
HPC.  The visual representation of the pulse compressed 
RFG signal in the time domain and frequency domains 
was used during our final integration tests and in-between 
flights to identify and resolve unexpected processing 
results and data representations.  It was this RFG test that 
provided a confidence test before and after each flight leg. 
 
E. Flight test experimentation and data collection 
 
 Designing the flight test came out of several meetings 
of TTCP Sensors Technical Panel on Signal/Image 
Processing.[3]  Hexagonal flight patterns were chosen to 
image and record six differing angles on the same ground 
location.  These datasets will support subsequent research 
into fusing multi-perspective imagery into three-
dimensional (3-D) models of objects in the scenes.  The 
second goal was to collect imagery around 1) a densely 
populated city environment and 2) an area centered on a 
high traffic maritime location.  The chosen locations to 
satisfy those requirements are Ottawa and Kingston, 
Ontario, both located on the southeast region of Canada.  
A sample flight path and associated hexagon coverage is 
shown in Figure 5.   
 The number of hexagons per flight was limited by the 
available disk storage space.  Initial estimates of 4.8 
terabytes of raw and processed imagery per hexagon 
limited each flight to two hexagons.  Six planned flights 
were to be spread across a three week window with the 
following pattern: fly on day one; do post 
processing/analysis for days two, three; and then fly again 
on day four.   
 To achieve a data link connection from the aircraft to 
Rome, NY several options were considered.  A 900MHz 
commercial radio LAN Bridge[4] was the quickest 
available selection and provided up to 300 Kbits/sec link 
capacity.   
 The primary data set is the raw SAR returns.  When 
the SAR radio frequency returns hit the ground area of 
interest the reflections were collected at an average rate of 
500 pulses per second.  All digitized samples were 
distributed across three groups of eight nodes each on the 
Coyote cluster.  This data allows for re-processing the 
hexagon of information with specifically tuned 
parameters to get a custom-focused picture.   
 Although the five flights indicate seven hexagons (42 
legs) of data were flown--only a subset of that data was 
collected due to various problems which eliminated some 

legs.  A total of 3.2 terabytes of raw data was collected.  
That equates to six legs of data in the Kingston area and 
23 legs of data in the Ottawa region.   
 Processed imagery is the second major data set.  A 
total of 4.1 terabytes of processed data was collected for 
the same location and number of legs as mentioned for the 
raw data. 
 
4.  Results  
 
 The frontend hardware was able to acquire a 37 km 
swath of 15 cm range cells at a 500 Hz rate and form up 
24 overlapped range extents.  These were then segmented 
into UDP packets and sent over 8 gigabit Ethernet links to 
the 24 processing nodes of the HPC.  The general utility 
of capturing high speed A/D information and packetizing 
it for consumption by Ethernet based clusters led this 
solution to become a commercial product.[3]

 Work to optimize the real-time SAR image formation 
processing succeeded in meeting the demands of a 500 Hz 
PRF system configuration.  The overall speedup was 
approximately 9000X over the initial algorithm 
specification.  Major speedups resulted from use of 
optimized libraries, eliminating time consuming 
cornerturn operations, and selecting sizings mindful of 
Level 2 cache capacities. 
 On the last flight, the stretch goal of linking the 
onboard information management environment to a 
similar environment on the ground via radio link and the 
internet was accomplished.  Metadata published onboard 
the airplane in Canada appeared on user consoles in 
Rome, NY within two seconds, and images queried by 
ground users were served up by the airborne database and 
returned to the ground within 14 seconds. 
 After extensive system integration in August 2005, 
five flight tests were accomplished by mid-September 
2005.  Hexagonal flight path with 40 km sides were flown 
with the radar imaging the inside of the hexagon to allow 
multiperspective looks at the area.   In addition to the real-
time imaging and exploitation, the raw data was written to 
disk, as were the images produced.  Overall 7.3 TB of 
data was collected to support future research. 
 
5.  Conclusion 
 
 Wide swath, high resolution SAR image formation 
has been a challenging signal/image processing problem 
to confront HPC computer architectures.  However, 
through a combination of optimization and parallelization, 
a 9000X speedup has been achieved, which now allows 
real-time formation of 37 km wide strips of imagery with 
<1m resolution.  Twenty-four dual Xeon nodes costing 
less than $100K are capable of sustaining the real-time 
throughput of 100 GFLOPS and continuously produce 
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imagery at a rate of 3.43 km2/second.  FPGAs allow 
commercial high speed A/D converters to be connected to 
the cluster across gigabit Ethernet links.   An onboard 
information management system allows the imagery to be 
published and exploited remotely within seconds.  The 
system has be successfully flight tested, with a large set of 
raw radar returns and processed images stored to support 
future investigations of new HPC architectures and 
signal/image processing algorithms. 
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Figure 1. Sample Stripmap SAR image from AFRL 

HPC off-line processing 

 
Figure 2. Swathbuckler system architecture with 

embedded HPC cluster 

 
Figure 3. Illustration of data decomposition of SAR 

algorithm 

 
Figure 4. Azimuth processing reduction timeline 
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Figure 5. Ottawa, Ontario hexagon flight patter 
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